

AIRS Tuning and Performance Tests

Larry McMillin
Climate Research and Applications Division
National Environmental Satellite, Data, and
Information Service
Washington, D.C.

Larry.McMillin@noaa.gov

L.M. McMillin NOAA/NESDIS/ORA

Microwave Tuning Results

AIRS Scan Mirror Coating Test

AIRS Tuning Plans

Microwave Tuning Results

- Predict the microwave measured calculated brightness temperature difference
 - Uses microwave channels as predictors
 - Ocean only until land emissivity is checked out
- First six slides show the Bias (first three slides) and RMS (corrected and uncorrected) as a function of channel for 3 selected views
 - 1 side,
 - 15 middle
 - 30 side

Tuning Results Continued

- The next 6 slides show
 - 1. Biases as a function of spot for channels 1 10
 - 2. Biases as a function of spot for channels 11 20
 - 3. Uncorrected RMS for channels 1 10
 - 4. Corrected RMS for channels 1 10
 - − 5. Uncorrected RMS for channels 11 − 20
 - 6. Corrected RMS for channels 11 20

Legend for the next slides

Channels

- 1 blue
- 2 green
- 3 red
- 4 cyan
- 5 magenta
- 6 yellow
- 7 gold
- 8 sky blue
- 9 violet
- 10 yellow green

Spot Biases for Channels 1 - 10

Spot Biases for Channels 11 - 20

Uncorrected RMS Channels for 1 - 10

Corrected RMS for Channels 1 - 10

Uncorrected RMS for Channels 11 - 20

Corrected RMS for Channels 11 - 20

AIRS Scan Mirror Coating Test

Procedure

- Collect a sample of cold scenes (< 210 K)
 - Assumption no atmospheric absorption in window region
- Calculate the average temperature as a function of scan position
- Calculate the spot to spot difference for selected spots
 - Reference is the average of the 2 center spots (45 and 46)
 - Differences are for spots (5, 15, 25, 35) on one side
 - and (85, 75, 65, 55) on the other side

AIRS Scan Mirror Coating Test

- Figures show:
 - The spectral for a typical clear profile
 - The spot to spot differences as a function of wavelength
 - The overlap for overlapping detector arrays
 - The temperature as a function of wavelength for window channels
- Note that these channels typically see warm temperatures.
 - Therefore the effects are greatly reduced for typical earth scenes

Tuning – Obtaining the Input

- A radiance calculation requires an entire profile
 - Skin temperature, emissivity, entire profile, and gas concentrations
 - Radiosondes most temperatures and water vapor
 - Missing surface skin temperature, upper levels, some gases
 - Forecasts most temperatures, water vapor, skin temperature, and some gases
 - Missing upper atmospheric levels
- Sources for the missing information
 - Forecast
 - Retrievals
 - Regression always available
 - Models surface emissivity over water

AIRS Tuning Plans

- Generate tuning coefficients for the AIRS instrument as well as the microwave
- Predict the measured calculated temperature difference
- Using
 - Eigenvectors of the channels +
 - Solar elevation angle
 - Latitude?
 - Other?

Conclusions

- Microwave has a side to side bias
- Microwave is biased without the antennae correction as expected
 - The antennae correction should reduce this
- An initial check for a scan position bias due to the mirror coating shows a pattern consistent with the measurements from the GOES witness samples with the same coating but note
 - Measurements were taken July 20th at maximum icing and need to be repeated with data after the heating
 - Effect is dependent on the temperature difference between the scene and the mirror
 - Earth scenes are warmer so the effect is small for clear measurements
 - Effect was tested using worse case conditions
- Agreement between detector modules that overlap is good